Integration by Substitution

Integration by Substitution

  1. \({\ }e^{4x}\)
  2. \({\ }8xe^{x^{2}+7}\)
  3. \({\ }4xe^{2x}\sqrt{x^{3}+3}\)
  4. \({\ }4x\sqrt{x^{2}+8}\)
  5. \({\ }xe^{x^{2}}\)
  6. \({\ }\frac{4x\; -\; 6}{x^{2}-\; 3x+\; 7}\)
  7. \({\ }\frac{3x^{5}\; +\; 1}{x^{6}+\; 2x}\)
  8. \({\ }\frac{2ax\; +\; b}{\left( ax^{2}+bx+c \right)^{2}}\)
  9. \({\ }\frac{2x}{\sqrt{x^{2}+4}}\)
  10. \({\ }\frac{12x+8}{3x^{2}+4x+8}\)
  11. \({\ }\frac{\left( \log x \right)^{3}}{x}\)
  12. \({\ }\frac{x}{\left( x^{2}+a^{2} \right)^{n}}\)
  13. \({\ }\int_{}^{}{\left( 7e^{2x}+\; \frac{5}{2x\; +\; 7}\; -2\; \sqrt{1-\; 5x} \right)}dx\)
  14. \({\ }\int_{}^{}{\left( Ax\; +\; B \right)^{n}}dx\)
  15. \({\ }\int_{}^{}{x^{2}e^{x^{3}}}dx\)
  16. \({\ }\int_{}^{}{x^{3}\sqrt{x^{2}-3}} dx\)
  17. \({\ }\int_{}^{}{x^{4}\; e^{x^{5}}}dx\)
  18. \({\ }\int_{}^{}{3x^{2}\; \left( x^{3}\; +\; 5 \right)^{4}}dx\)
  19. \({\ }\int_{}^{}{x^{n-1}\; \left( 5\; +\; 7x^{n} \right)^{}}dx\)
  20. \({\ }\int_{}^{}{e^{x}\; \left( e^{x}+2 \right)^{2}}dx\)
  21. \({\ }\int_{}^{}{x\sqrt{2x^{2}+3}}dx\)
  22. \({\ }\int_{}^{}{\frac{x^{n-1}}{\left( a+bx^{n} \right)^{n}}}dx\)
  23. \({\ }\int_{}^{}{\frac{x}{x^{2}+a^{2}}}\; dx\)
  24. \({\ }\int_{}^{}{\frac{x^{2}\; -\; x}{x^{3}-\; 3x\; +2}}\; dx\)
  25. \({\ }\int_{}^{}{\frac{1}{x}e^{\log x}}\; dx\)
  26. \({\ }\int_{}^{}{\frac{1}{x}\left( \log x \right)^{2}e^{\left( \log x \right)^{3}}}\; dx\)
  27. \({\ }\int_{}^{}{}\frac{dx}{x+\sqrt{x}}\)
  28. \({\ }\int_{}^{}{\frac{\left( x+1 \right)\; \left( x+\; \log x \right)^{2}}{x}}dx\)
  29. \({\ }\int_{}^{}{\frac{x}{\sqrt{2x^{2}+3}}}dx\)
  30. \({\ }\int_{}^{}{\frac{x^{2}}{\sqrt{1-x}}}dx\)
3 Responses to “Integration by Substitution”
  1. zvodret iluret July 31, 2018
    • Admin bar avatar EconomicsLive August 1, 2018
  2. minuteman hosta information August 28, 2018

Leave a Reply

Get more stuffs like this
in your inbox

Subscribe to get updates on forthcoming posts to your email inbox.

Thank you for subscribing.

Something went wrong.